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The vibratory bowl feeder is widely used to convey small engineering parts, and can be
considered as a typical non-linear dynamic system experiencing repeated impacts with
friction. This paper presents a simpli"ed model and analysis for the dynamic behavior of
a single part on the vibrating track of the bowl feeder. While the previous studies are
restricted to the sliding regime, the presented analysis is focused on the hopping regime
where the high conveying rate is available. The periodic and chaotic regions in the hopping
regime are identi"ed through numerical simulation and experimental analysis. It is veri"ed
experimentally that the conveying rate in the chaotic region is roughly independent of
variations of external parameters. The dynamic e!ects from the variation of several physical
parameters are examined and the important features for the e!ective design of the vibratory
feeder are presented. This research holds much potential for leverage over design problems
of a wide range of mechanisms and tools with repeated collisions.
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1. INTRODUCTION

The vibratory bowl feeder is the most versatile of all hopper feeding devices for small
engineering parts [1]. The track along which the parts travel is helical and passes around
the inside wall of a shallow cylindrical hopper or bowl. The bowl is usually supported on
three or four sets of inclined leaf springs secured to a heavy base. Vibration is applied to the
bowl from an electromagnet mounted on the base, and the support system constrains the
movement. When component parts are placed in the bowl, the e!ect of the vibratory motion
is to cause them to climb up the track to the outlet at the top of the bowl. The motion of
a part on the track can be either of the sliding type (S-regime), of the hopping type
(H-regime), or a combination of both (HS-regime) [2].

Since the pioneering work reported by Boothroyd [1], theoretical and experimental
aspects of vibro-transportation have been abundantly studied. The rich literature [3]
devoted to this topic indicates the numerous problems the constructor of vibratory feeders
has to deal with. Usually, a vibratory feeder is tailored for each particular application and
the design is based merely on modi"cations to previous designs and empirical debugging
rather than on theoretical methods of calculation of the dynamic process.

Recently, Berkowitz and Canny [4] have presented a tool based on dynamic simulation
for doing parameter enumeration, analysis, and Markov model-building of parts feeders.
Huang and Mason [5] found two distinct methods of vibratory manipulation in the context
of tapping planar objects sliding on a planar surface. Quaid [6] presented the design,
operation, and simulation of a mobile parts feeder. Lim [7] presented a dynamic model for
022-460X/02/030529#13 $35.00/0 ( 2002 Academic Press
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the linear vibratory feeder and investigated the operating parameters that could a!ect the
conveying velocity of a part. Hongler and Figour [2], Hongler et al. [8], and Hongler [3]
discussed the transport properties of the bowl feeder and analyzed its dynamics which is
described by a set of coupled, non-linear and strongly dissipative mappings.

The dynamic model developed in this research shall assume a simple geometry, namely
the linear vibrating track. Thus, the centripetal and Coriolis accelerations which are to be
considered in the bowl can be omitted. The vibratory motion of a part in the feeder is closely
related to the problem of a bouncing ball on a vibrating table and can be considered as an
example of engineering applications in which the problem arises. Holmes [9] presented the
approximate model of the bouncing ball system, and Bapat and Sankar [10] gave a more
detailed analysis of the problem. Tu"llaro et al. [11, 12] showed that the bouncing ball
problem has proved to be a useful system for experimentally exploring several new
non-linear e!ects. However, previous treatments of the bouncing ball problem have
neglected the frictional e!ects during the repetitive impact and cannot be directly applied to
actual applications such as the vibro-feeding whose performance is dominantly a!ected by
the friction [7].

This paper presents a simpli"ed dynamic model and discusses the transport properties
of the system. While the previous studies are restricted to the sliding regime, the
analysis in this research is focused on the H-regime where the high conveying rate
is available. The H-regime will always be reached for relatively large excitation
parameters. While most of the previous studies were restricted to the purely periodic
regime, the existence of chaotic regimes is identi"ed numerically and experimentally
in this paper. The numerical simulation and experimental results for dynamic behavior
and conveying rate in the periodic and chaotic regimes are compared and presented. In
addition, the dynamic e!ects from the variation of several physical parameters are
investigated and the important features for the design of the vibratory bowl feeder are
presented.

2. DYNAMIC BEHAVIOR OF A PART

The bowl of the feeder has a torsional vibration about its vertical axis, coupled with
a linear vertical vibration. The motion is such that any small portion of the inclined track
vibrates along a short, approximately straight path, which is inclined to the horizontal at an
angle greater than that of the track. When component parts are placed in the bowl, the e!ect
of the vibratory motion is to cause them to climb up the track.

2.1. MODELLING OF BOWL FEEDER DYNAMICS

In order to render the problem amenable to mathematical treatment, this research makes
some assumptions. First, it is assumed in the analysis that the motion of the part is
independent of its shape and that the track's mass is much greater than the part's mass m

p
.

Thus, the dynamic motion of the track is not a!ected by the part during the process. Second,
it is also assumed that there is no tendency for the part to roll down the track and Coulomb
frictional e!ects (with coe$cient of friction, k) exist between the track and the part. Third,
the discussion is restricted to the linear case for which the centripetal and Coriolis
accelerations are absent. As shown in Figure 1, the track of a vibratory feeder is assumed to
move bodily with simple harmonic motion along a straight path inclined at an angle
(line of vibration). Fourth, e!ects of torsional vibration are neglected and no phase



Figure 1. Modelling of a vibratory bowl feeder.
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di!erence is assumed between the parallel and perpendicular components of the excitation
of the track.

The slope of the track is track angle a, and vibration angle t is the angle between the
track and its line of vibration. The local frame (x, y) is mobile and attached to the track. In
view of Figure 1, the governing equations of the motion for a part relative to the track can
be described by
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In equation (1), F and N stand, respectively, for the friction and normal reaction forces, and
a
0

and u are the amplitude and angular frequency of track vibration respectively.
Subscripts P and ¹ indicate, respectively, the part and track. Depending on the actual value
of N, the motion of the part can be S-regime or H (or HS)-regime.

In the S-regime, the part does not lose contact with the track and y("0 in equation (1).
Hence, the normal reaction force can be computed as
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As shown in equation (2), the control parameter j must be larger than 1 in order to keep the
contact. The motion is S-regime for j'1, and H- or HS-regime for 0(j)1. The control
parameter j is the dimensionless group composed of the frequency and amplitude of
vibration and plays an important role in the analysis of the part's periodic and chaotic
motion.
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In the pure H-regime, the relative free-#ight equation of the part between two consecutive
impacts with the track can be represented from equation (1) as
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Normalizing equation (3) yields
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In HS-regime, the part repeats getting stuck and then being released. The part remains
stuck to the track at the end of the sequence of impacts and moves with the track until it
reaches the unstuck instant. The instant the part is released can be calculated with the
condition N"0 from equation (2) and is shown as
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Note that the part can be released only when j)1 but cannot be released if j'1. In
addition to that, the release of the part is possible only when the track is accelerated into the
negative > direction. Therefore, the unstuck phase h

unstuck
should be located in the 1- or

2-quadrant of the phase plane. If there happens to be a sliding contact immediately after the
nth impact (q"q

n
), the unstuck phase must exist within one period from q

n
as shown
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2.2. ANALYSIS OF REPEATED IMPACT MECHANICS

The velocities immediately before and after the nth impact (q"q
n
) from the initial time

(q"q
0
) are de"ned as
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When n*1, the post-impact velocities represented by equation (8) can be computed from
the pre-impact velocities by using the frictional impact analysis results [13]. The dynamics
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of the part between the nth and (n#1)th impacts q
n
(q)q

n`1
, can be obtained as shown

in equation (9) by integrating equation (4).
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Integrating equation (9) again results in
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Using equation (10b), the (n#1)th impact instant q
n`1

can be calculated from the nth
instant q

n
and the relation is shown as follows:
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In equation (11), v
n

is always zero except the initial relative position v
0
. Substituting

q
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calculated from equation (11) into equation (9), the pre-impact velocity at the (n#1)th
impact can be obtained as
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In equation (13), vR
n`1

must be negative for the (n#1)th impact to occur.
In order to compute the post-impact velocities at the nth impact, the frictional impact

theory [13] presented by one of authors of this paper has been adopted. The analysis of
impact motion with friction is covered in detail in Han and Gilmore [13]. One of the
constant impact parameters, B, which depends on the mass moment of inertia and the
relative geometric con"guration is zero since the part is considered as a point mass in this
research. Therefore, there are three possible cases and the resulting two modes of the impact
process: sliding and sticking, and forward sliding. For the mode of sliding and sticking, the
impact case can be 1 or 3, and the impact case is 5 for the mode of forward sliding. The
results can be summarized as follows and the details can be referenced from reference [13].
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f Forward sliding (impact case 5): DuR
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From the results of frictional impact analysis, equations (14) and (15), the normal
component of post-impact velocity can be represented as
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The mapping equations represented by equations (11) and (16) eventually become the
problem of bouncing ball, and present both periodic and chaotic solutions. The occurrence
of these regimes is governed by changing the external control parameter j. The transition
from periodic solutions to a chaotic regime occurs via the famous Feigenbaum
(period-doubling) cascade of bifurcations [14].

2.3. TRANSPORT RATE

In general the transport rate is di$cult to calculate in a purely analytical manner. Indeed,
both the sliding and hopping modes have to be taken into account as they de"nitely
contribute to the overall transport properties of the feeder. In this paper, the transport rate
in pure hopping regime is considered and the dominant contribution will be due to the
hopping of the parts on the tracks. However, it is always possible to calculate separately
the transport rate due to the hopping and the sliding portion of the motion of a part.

The transport rate is directly related to the mean velocity=
n
(in the parallel direction)

achieved between two successive impacts, which is represented as
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Therefore, the mean conveying rate in hopping regime can be written as
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In equation (19), n must be su$ciently large so that the mean conveying rate has a physical
meaning. Equation (19) is used as a mean conveying rate in the chaotic region, too. Then, in
the region of period k, the mean velocity can be represented theoretically as
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In the periodic region it is possible to obtain the analytical solution for the mean
conveying rate to a certain extent through solving the mapping equations represented by



Figure 2. Experimental apparatus for measuring dynamic parameters.
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equations (11) and (16) [2]. However, it is not possible to get the mean conveying rate
analytically in the chaotic region and the numerical simulation analysis is necessary.

3. PRELIMINARY EXPERIMENTS AND NUMERICAL SIMULATION ANALYSIS

First of all, physical parameters must be appropriately determined in order to perform
the numerical simulation for the bowl feeder model represented by the mapping equations
of equations (11) and (16) and the mean conveying rate of equation (19).

In experiments, the vibration amplitude of the track is changed through adjusting the
input voltage for the electromagnets but the operating frequency f is "xed as 120 Hz. As
already discussed, the control parameter j is composed of the track angle a and vibration
angle t as well as the vibration frequency and the amplitude. The track angle a is estimated
through averaging values measured at 10 di!erent points on the track in the bowl. The
vibration angle should be determined experimentally, too. As shown in Figure 2, the
accelerations along the track and normal to the track are carefully measured using
a three-axis accelerometer, and the vibration angle t can be found. Since the vibration
frequency is a "xed constant, vibration amplitude a

0
for each input voltage and the

corresponding control parameter j can be calculated. Table 1 summarizes the results of
preliminary experiments, and Table 2 shows the estimated physical parameters for
numerical simulation analysis.

Figure 3 shows the period-doubling bifurcation diagrams for repeated impacts between
the part and the vibrating track. These bifurcation diagrams represent only pure H-regime
except the sliding contact regime. The graphs shown in Figure 3 stand for the latter 150 ones
from total 500 repeated impacts for each value of control parameter. According to the
simulation results, the bifurcation moves to the larger value of control parameter as the
coe$cient of restitution increases as shown in Figure 3.

Figure 4 shows the impact case and mean conveying rate as the control parameter is
varied. As shown in Figure 4(a), for k"0)2, there exists only a sliding and sticking impact
mode (impact case 1) in period 1 regime but there are mixed cases of impact in other
periodic and chaotic regimes. As the coe$cient of friction k is increased, the region of



TABLE 1

Results of preliminary experiments

a
o
u2 cos t a

o
u2 sin t

Input volt t a
o
cos t a

o
sin t a

o
(V) (mV) (m/s2) (mV) (m/s2) (deg) (mm) (mm) (mm) j

90 38)57 48)52 12)70 16)43 18)2 0)085 0)029 0)090 0)612
92 41)13 51)73 13)47 17)43 18)1 0)091 0)031 0)096 0)577
94 44)07 55)43 14)42 18)66 18)1 0)098 0)033 0)103 0)539
96 46)27 58)20 15)30 19)79 18)3 0)102 0)035 0)108 0)508
98 50)37 63)35 16)51 21)36 18)2 0)111 0)038 0)117 0)470

100 53)13 66)83 17)86 23)10 18)6 0)118 0)041 0)124 0)435
102 55)37 69)64 18)54 23)98 18)5 0)123 0)042 0)129 0)419
104 58)70 73)84 19)46 25)17 18)3 0)130 0)044 0)137 0)399
106 61)17 76)94 20)61 26)66 18)6 0)135 0)047 0)143 0)377
108 64)33 80)92 21)09 27)29 18)2 0)142 0)048 0)150 0)368
110 67)50 84)91 22)66 29)31 18)6 0)149 0)052 0)158 0)343
112 71)47 89)90 23)55 30)47 18)2 0)158 0)054 0)166 0)330
114 74)03 93)12 24)70 31)95 18)5 0)164 0)056 0)173 0)315
116 77)05 96)92 25)67 33)21 18)4 0)170 0)058 0)180 0)303

Note: u"2p (120) rad/s.

TABLE 2

Measured data for the physical parameters

Physical parameters t a f e k
Measured values 183 53 120 Hz 0)1 0)5

Figure 3. Bifurcation diagrams for the dynamic behavior of repeated impacts: (a) e"0)1, k"0)5; (b) e"0)2,
k"0)5.
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impact case 5 (forward sliding mode) shrinks gradually and completely vanishes around
k"0)8 in periodic regime. The mean conveying rate in periodic regimes increases with
increase in the control parameter but there is no apparent tendency along the control
parameter in chaotic regime. An increase in friction coe$cient generally produces a slight
increase and reduced parameter sensitivity in the conveying rate. Note that the conveying



Figure 4. The case of frictional impact and the mean conveying rate: (a) e"0)1, k"0)2; (b) e"0)1, k"0)5;
(c) e"0)1, k"0)8.

CHAOTIC DYNAMICS OF BOWL FEEDERS 537
rate is a little less sensitive to change of the control parameter in chaotic regime rather than
in periodic regime.

4. EXPERIMENTAL ANALYSIS

Experiments were conducted using a commercially available vibratory bowl feeder as
shown in Figure 2. The vibratory bowl feeder for the experiments has four leaf springs and
the vibration amplitude can be controlled with the input voltage for the electromagnets. In
experiments, the part to be conveyed is a rectangular steel pin having a dimension of
8]8]27 mm3.

4.1. PERIODIC AND CHAOTIC BEHAVIOR OF A PART

Figure 5 shows the experimental set-up for monitoring the dynamic behavior of repeated
impacts between the track and the part. The end of one thin copper wire from the data
acquisition board is attached on the top of the rectangular steel part and the end of the
other wire is glued on the vibrating track. The inside wall of the bowl is electrically insulated
so that the contact between the part and the inside wall of the bowl can be excluded during
the measurements. The impact instants between the part and the track can be observed by



Figure 5. Experimental set-up for monitoring the dynamic behavior of repeated impacts.

TABLE 3

Experimental and numerical results of identifying classi,ed regimes

Hopping regime

Control parameter Chaotic Periodic HS-regime

Experiment <
in

117}121 110}117 }110
a
0
(mm) 0)184}0)200 0)158}0)184 }0)158
j 0)280}0)298 0)298}0)343 0)343}

Simulation j 0)280}0)290 0)290}0)350 0)350}
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measuring the voltage di!erence between these two wires at the rate of 1000 samples/s.
Table 3 summarizes experimental results for classi"ed regions and Figure 6 shows typical
results of repeated impacts in each classi"ed region. In Figure 6, the lower-voltage portion
indicates that the part maintains contact with the track, and the part is released from the
track during the relatively higher-voltage portion. In the simulation analysis, it is assumed
that the motion of the part is independent of its shape. Since a rectangular pin whose size
e!ects cannot be simply neglected is used in the experiments, there were subsequent tilts or
many secondary collisions to each primary collision between the part and the vibrating
track during the climbing process. It is not easy to di!erentiate primary collisions from
subsequent tilts or secondary collisions. Therefore, it was almost impossible to capture the
instants of period-doubling cascade of bifurcations as shown in the simulation analysis. In
this work, it was fairly possible only to distinguish the periodic region from the chaotic
region.

4.2. FEED RATE

Two di!erent sets of experiments for measuring the feed rate were conducted: First,
a single part is put on the track and the time taken for the part to travel over a "xed distance



Figure 6. Monitored results of repeated impact in classi"ed regimes: (a) Hopping-chaos (j"0)288);
(b) hoppig-period (j"0)323); (c) sliding (j"0)388).

Figure 7. Experimental results for conveying rate: a single part.
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marked on the track is measured. In the experiments, the e!ect of the control parameter
on the feed rate was investigated. Second, parts are presented in bulk at the bottom of the
bowl and the number of parts which climb up the track to the outlet at the top of the bowl
during the speci"ed time is measured. In this experiment, the e!ect of the number of parts
(load sensitivity) on the feed rate was investigated for various values of the control
parameter.

The results of the "rst set of experiments are shown in Figure 7. As expected from the
simulation analysis, the feed rate in the chaotic regime is less sensitive to the change of
the control parameter than in the periodic regime. In reality, the feed rate in the chaotic
regime is roughly independent of the control parameter. The feed rate is higher in periodic
regime than in chaotic regime, and is higher in hopping regime than in HS-regime. It is
possible to compare the experimental results qualitatively to the simulation analysis results
for various values of the control parameters.

In the second set of experiments, bolts (H8]25) are loaded in bulk at the bottom of the
bowl. In order to estimate the feed rate, the time which is taken for 10 parts to discharge was



Figure 8. Experimental results for conveying rate: *d*, 200; *j*, 400; *m*, 800 parts.
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measured. Note that in experiments it is much more convenient to measure the time taken
for the speci"ed number of parts to climb up the track to the outlet than to count the
number of parts which are discharged during the speci"ed time. The experimental results
are presented in Figure 8. It can be con"rmed that the feed rate in chaotic region is less
sensitive to change of the load than in periodic region. In all regions, the feed rate decreases
as the load in the bowl increases.

5. CONCLUSIONS

The dynamic behavior of a single part on the vibrating track of the bowl feeder has been
modelled and analyzed. The numerical simulation and experimental results for dynamic
behavior and conveying rate in both periodic and chaotic regimes are presented. The
dynamic e!ects from the variation of several physical parameters are examined and the
important features for the e!ective design of the vibratory feeder are presented. While most
of the previous studies were restricted to the purely periodic regime, the existence of chaotic
regimes is pointed out numerically and experimentally in this paper.

The periodic and chaotic region in hopping regime is identi"ed through experiments
and the feed rates in each region were compared to numerical simulation results. It
was veri"ed experimentally that the conveying rate in the chaotic regime is more or
less independent of variations of the external parameters such as control parameter and
load. The results of experiments con"rm the trends of numerical analysis for the feed rate.
Therefore, the simpli"ed model and accompanying numerical analysis method can be used
as an e!ective design tool for vibratory feeders. This research holds much potential for
leverage over design problems of a wide range of mechanisms and tools with repeated
collisions.
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